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Coming Full Circle...

1988 Conference at Argonne, Talk by Berger & Qiu
(Qiu & Sivers)
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For x;<<0.12, parton wavefunctions
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eRD17 in a nutshell

- Forward detector/IR design is happening NOW
- DIS Models for eA have a serious deficiency.
 Missing multinucleon DIS events (shadowing).
- We don't really know how complete the
forward coverage needs to be.
- Upgrade DPMJetHybrid to include known effects
- Simulate a couple of key measurements.
- Geometry tagging
- Multinucleonic recoll of intrinsic k.- (aka Q).
- Phase | of project in FY2016: $32,000 (=$64k/2)
- Phase |l in FY2017: $33,000
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Comparison with E665 data

E665, PRL 74 (1995) 5198
Evaporation neutrons (E-m<10 MeV)

DPMIJET (only valid at low Q?) DPMIJETHybrid
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Zheng, Aschenauer, Lee,
EPJA 50 (2014) 189
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Primary Distribution

Recall from January: We were concerned about forward primary neutrons:
DPMJET primaries peaked too low in n vs. Pythia/ZEUS extrapolations.

No worries! Solid: DPMJET Dotted: DPMlJetHybrid
DPMJETHYybrid works fine! 5 VT T T TS
'..3 | u primary .
« 0F E
— F — evaporation .
1072 g =
= — cascade =
10° E =
10 é— —é.
10° é— —é.
N 0
n
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Geometry tagging physics

Chapter 3: The Nucleus: A Laboratory for QCD (p59)

Can the nucleus, serving as a color filter, provide novel insight into the
propagation, attenuation and hadronization of colored quarks and gluons?

using the nucleus as a space-time analyzer the EIC will shed light on answers to the
gquestions such as the following: How does the nucleus respond to the propagation of
a color charge through it?7 What are the fluctuations in the spatial distributions of
quarks and gluons inside the nucleus? What governs the transition from guarks and

Electron lon Collider:
The Next QCD Frontier gluons to hadrons?

Geometry tagging is essential for this goal!

What is the role of saturated strong gluon flelds, and what are the degrees
of freedom in this high gluon density regime? An EIC will allow us to probe
the wave functions of high-energy nueclei. By studying these interactions, one may
probe the strong gluon fields of the CGC, possibly the strongest fields in nature. In ...

Geometry tagging is required to address this goal with 40 GeV*A ion energies.
Further enhances saturation at 100 GeV*A ion energies.
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Technical aside: Definition of "d"

Zheng, Aschenauer, Lee defined the “edge” of the nucleus to be where the density
falls to 1/101 (<1%) of the maximum.

b=0
< — Exact Fermi
This includes 0-6 fm of empty | -
space as part of “d”. 02
We will define d as: O e
[d =]dz p/p,| W/integralfromZ_ . — oo

Note: d = RAU=6.38 fm for collision at center of nucleus.
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Geometry tagging (w/o shadowing)

N,

— Au (no shadowing)

— Cu (no shadowing)

— Ca (no shadowing)

Min bias A scan

12 _ 14
d (fm)

Intra-nuclear cascading
increases with d (forward
particle production)

Leads to more evaporation
of nucleons from excited
nucleus (very forward)

Tagged eAu (samples scaled to same area)

LOOKS GOOD!
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Path Iength selectlon purity vs. efficiency
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@ Geometry tagging using only evaporation
neutrons is already encouraging!
- Proof of concept
- Limitation: cut on large multiplicity is
required, reducing efficiency (yield)
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@ How important is it to measure forward
charged particles as well?
Multi-dimensional constraints may allow both
1 high purity and efficiency
IntraNuclearCascading may allow us to infer
the direction of b as well as its magnitude.
@ How will tagging improve in the nuclear
shadowing region (low x)?
- Central (low b or high d) events will have
multiple collisions improving our resolution.

- Low b will have more collisions than high b,
leading to a direct signal for low b.
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Lo ]

Thanks to Pawel Nadel-Turonski for input on this slide
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Geometry tagging b vs. d
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increases with d (forward

Leads to more evaporation
of nucleons from excited

Evap. n - tagged eAu
No shadowing

b is indirectly taggable

because it correlates with d.

Tagged eAu (samples scaled to same area)
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Saturation at EIC is multi-nucleonic

Executive Summary (page ix)

To date
this saturated gluon density regime has not
been clearly observed, but an EIC could en-
able detailed study of this remarkable aspect
of matter.

This pursuit will be facilitated by
electron collisions with heavy nuclei, where
coherent contributions from many nucleons

Electron lon Collider:
The Next QCD Frontier eftectively amplify the gluon density being

Understanding the glue

probed.
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Basic idea of proposal

O The virtual photon, in the target rest frame,
/ O O\\ can be treated as alternating between a

,;,,,ZE \ point-like particle with c~0 and a
\O "6" Ol “dipole” or more complicated hadronic

\\O O // object with a larger ¢ (few mb). The
N o 7 coherence length of the “dipole” is
S~ A~1/(2Mx). The fraction of the time it
(c) spends in this state is whatever fraction

IS needed for the total O, to be correct.

Do NOT model saturation in detail to find o (X,Q?)!

Rather, use an input value of nuclear shadowing R*!(x,Q?) to find

G 4ineX:Q%). Then model probability of multiple nucleon DIS.

06-July-2016 MDB - Forward Detector Optimization 12



Making the map for A>>R

Most of the complications in saturation theory are in predicting the dependence on
X, Q2. With Glauber, we can make a simple map:

@GN(X’QZ) ﬁ G“dipole”(x’QZ ﬁ I:)(Ncoll’b)

-------

4
-

-------
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Infinite coherence length

-—;11.2_
< |
4 ?. Using TGlauberMC “p”"Au
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A
R™=c /(A

Looking up the appropriate o ., (X,Q%)

Infinite coherence length

|i"|||m

. Using TGlauberMC “p"Au
Alver, MDB, et al,, arXiv:0805.411 &
L izides et aI arXiv:1408.2549
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Event-by-event, given x & Q2

E.g. for x=0.001, Q%=1.69 GeV?
RAMN)(x—0, Q*=1.69GeV?) = 0.711
c.. ,=916mb

"dipole
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make map.

Map for A >> R
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N_ (b) for Q*=1.69 GeV?x<<1

c"/c"(x,Q%) 4 (X,Q7) C—) P(NCO@

-
= 2F
. . ~ - = Shadowing (R=0.711)
- Big difference between b=0 & 1'8%+ .
*  No Shadowing (R=0.
b=R,,=6.38 fm atlow x,Q> ¥ %t "+ e, Shadonto (0%
- Geometry tagging easier. 1.2 RS
Now b is directly correlated 1
with measurable activity 0.8;
0.6F-
0.4
0.2F
ot L | A R R B
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b (fm)
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N_ (b) for Q*=1.69 GeV?x<<1

c"/c"(x,Q%) 4 (X,Q7) C—) P(NC@

s °F

. Big difference between b=0 & IS

b=R, =6.38 fm at low x,Q? 7 1'ig++++*+++
- Geometry tagging easier. 1.2

Now b is directly correlated 1

with measurable activity 08
- Enhanced shadowing gi:

(& saturation?) ook

at b=0 (recall R=1/N__ ). 003 L)

= Shadowing (R=0.711)

*  No Shadowing (R=0.994)
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Plans for remainder of FY2016

- Implement multiple collisions in DPMJetHybrid
- Simplification: A=0 or A== only.
- Simplification: Only 1 DIS /event for now
(the rest can be elastic/diffractive).
- Released code for use at BNL, JLAB, (&...)
» Quick look
- Physics simulations of geometry tagging.
- Physics simulations of multinucleon k_ recoil.
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FY2017: Making the map for A ~ R
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Map for A >> R

111
o1 02 03 04 05 06 07 08 09 1
R™ =6 ,/(Ac )

By the end of FY2016, we will have implemented 1=0 (default) & A=oo.
For finite A, must modify TGlauberMC & DPMJetHybrid (again).
The map will give us o, .. as a function of R*(x,Q%) & A(x).

06-July-2016
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FY2017 Plans

- Remove limitations from "simplified" model
+ Include intermediate values of 1. (& of x;)

- Allow multiple DIS interactions, not just 1,
requiring non-trivial color connections.
» Project should be complete at end of FY2017
- Released code for use at BNL, JLAB, (&...)
- Physics simulations of geometry tagging.
- Physics simulations of multinucleon k.. recoil.
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Manpower & Budget

Effort Cost to
Person Institution (FTE-year) | Proposal | Remarks
E. Aschenaner | BNL 0.05 50 cost covered by BNL
M.D. Baker MDBPADS[22] | 0.14 $33.,000
J.H. Lee BNL 0.05 s0 cost covered by BNL
L. Zheng CCNU 0.10 50 cost covered by CCNU & BNL
TOTAL: 0.34 $33.,000

06-July-2016

Table 2: Personnel Budget Breakdown
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Critical Issue:

(' /

FY2016

1QFY2017

FY20187?7?7
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Summary

 Nuclear shadowing effects are imporatant!
- Observing saturation is a key physics goal.
- Geometry tagging sensitive to shadowing.
» Our eA DIS models don't handle it!
» Need to fix this NOW
* IR design is ongoing at eRHIC & JLEIC.

- Team with the exact MC expertise is in place.

- Extremely cost-effective.
» Short-term projecit.
- High Impact.

06-July-2016 MDB - Forward Detector Optimization
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Note: b=3fm is still quite central!

b=3 fm

Hard sphere — half-height radius for Au: R=6.38 fm o(b<3fm)/c(total) = 29.5% (no shadow)

25.5% (R=0.711)
Thickness @ b=3fm = 88% of max.
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Impact of PARP(91)=k_™s

fraction
=

10°
10°
10°
10°

10°°

Solid: 0.24 GeV Dotted: 0.11 GeV

E L N DA NN B BN BLELEL BLELELE B |
E primary E
E =
- — evaporation 3
I§_ — cascade
E
E
E
-, ...|...|...|._.|...|,...|...t--r|J:L.
-4 -2 0 2 4 6 8 10 12 14
n

Modest changes in PARP(91) are barely visible.
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Ncoll(d) for Q?=1.69 GeV?2,x<<1

S 29
n - Shadowing (R=0.711)
Z\; 2| * No Shadowing (R=0.994) +++*+*+
- +
B +
1.5~ +—-1I@—*+
- ot
_1: -H-*_*—*
0.5
0_ | | | | | | | | | | | | 1 | | I | | 1 | | | | | | | | | |
0 2 4 6 8 10 12 14

d (fm)
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eA: Basic Quantum Mechanics

h=c=1

Bauer, Spital, Yennie, Pipkin

Rev. Mod. Phys. 50 (1978) 261

S

36““"5 OMN
High x,, Mﬁ%

\ Q"’

..-"'

Nucleus Rest Frame {bj

\© 0O J
x@x‘ho HE};
(c)

"Infinite"
Momentum
Frame

Y=P/M
r'=r/y
R'=R/y :

| ﬂ'“
|
Y |

r=0.88 fm 1/(2Mr) =0.12

Ap Az =1/2

pzquark — MX’Y

Az = 1/(2Mxy)

Az/r* = 1/(2Mxr)

= 0.12/xBj

A Jr=1/(2Mxr)=0.12/x,

For x;,<<0.12, parton wavefunctions
and/or interaction cannot be localized.




A tate tall of 3 d's

What do we mean by this circle? Fermi distribution for Au

—
N

PP,

b

0.8

0.6

0.4

0.2

C‘)D

2 4 6 8 10 12
r (fm)

Black line is R (hard-sphere approximation): leads to d=d,__

Blue line is R_, .=R+a"In(100) (edge approx., used by ZAL): leads to d=d_,

Red curve is actual matter distribution.

Define d =Jdz p/p, w/integralfromZ__ . —

Note: First collision at center of nucleus leads to azdhs=RAu=6.38 fm
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Problems with hard edges |

pAu non-shadowing

_ dhplotAu
- Entries 10000
1600 — Mean 4 505
- RMS 3.367
1400 —
1200 Most natural is probably d _,
mm:_ but then ~10% of events have first interaction
- “outside” & downstream of the nucleus so we
800 have to set d=0 (or negative or imaginary!)
600 —
: 1
400 _—_,—‘
200
D_ 1 | 1 | 1 1 1 |
0 2 4
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Problems with hard edges I

pAu non-shadowing

800 .depIﬂtAu
Entries 10000
Mean £.692
BRMS 3.189

500

400

300

With d_, . (R, = R+4.605a)

<0.5% of events occur
“outside” & downstream
BUT “d” now includes ~3fm of
relatively empty space!

200

100

D | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

0 2 4 6 8 10 12 14 16 18

Qe (fM)
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p/p, ={ 1+ exp[(r-R)/a] } Note: r2 = b? + 72

=1.2

— Exact Fermi

p/p

0.8

0.6

0.4

0.2

D |III|III|III|IIIIIIIIIIIIIII

-10 -8 -6 -4 -2 0 2 4 6 8 10

I For a collision 1i\?D]tgh? Cen]t)er of(;th,e,nucleus: .
ad d,. = R = 6.38fMm white"d e R T8 BA4fm  (for my WS-params)



d_,.. counts a lot of nearly empty space as part of the nucleus.

edg
b=0

=1.2

— Exact Fermi

p/p

0.8

0.6

0.4

0.2

D |III|III|III|III|III|III|III|III
-10 -8 -6 -4 -2 0 2 4 6 8 10

For a collision near the back of the nucleus @ r=R: >
d=aln2 =0.37fm while d, =0, d_, =R __-R=4.6052=2.46fm

X
06-July-2016 MDB - Forward Detector Optimization

32



Collision at Z= -2fm b=R+2a=7.45fm
b=R+2a (7.45 fm)

1.2
— Exact Fermi

p/p

0.8

0.6

0.4

0.2

-8 -6 -4 -2 0 2 4 6 8 10
Z (fm)

=’
u_

d_..=6.77 fm (>R!) with almost NO material! d=0.525 fm, d_=0

edge
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Trajectory for previous slide.

Fermi distribution y=0 slice

E N1 ) P, contour

N 0.9

1 0 ceeee. 0.99%/99.01% P contour
..................... os
5 0.7
0.6
0 -0.5
0.4
S 0.3
................... 0.2

-10
0.1
06-July-2016 10 5 0 5 10 0

34



Qogge  (fM)

Comparison of d_, - and d for Au
using TGlauberMC

D [ N S T ot SO L L
- TMath::Max(0,dedge)-dbar
-2 oo o oo b b v b o b e b
0 2 4 6 8 10 12 14 16 18

d (im)



Comparison of d__and d for Au

using TGlauberMC
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- Mean 4
2500— RMS 0.5199
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Ncoll(d,, ) for Q*=1.69 GeV*,x<<1

FzA/FzN(X’QZ) ) Cydipole(X’QZ) s P(Nc(@

-~ 2.5
g * Shadowing (R=0.711) +
=)
= +
AT? o *  No Shadowing (R=0.994) ++++++*
Z n +,
v
B e Fas
1.5~ *+**
L ****
1: -'l'-***
sseesttilssssssststssssssssssssettons o
0.5
O_I 11 | 11 | | 11 | | 11 | | 11 | | I | 1 1| | 1 1| | 11 |
o 2 4 6 8 10 12 14 16 18
dﬁﬂ[‘lﬁ (fm}
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What about eA”?
DPMJet-Hybrid (1.0)

From: https://wiki.bnl.gov/eic/index.php/DpmjetHybrid

P - A hybrid model consisting of
DPMJet and PYTHIA with
nPDF EPS09.

Muclear geometry by
DPMJet and nPDF provided
by EPS09.

. Parton level interaction and
S mmm==—- <4 -=-4 jet fragmentation completed
S E AR =TT in PYTHIA
| : Muclear evaporation { gamma

| dexcitation/nuclear fission/fermi
: break up ) treated by DPMJet
I

I

Energy loss effect from routine by
Salgado&Wiedemann to simulate the

nuclear fragmentation effect in cold
nuclear matter

“One thing to be mentioned for the case to run PYTHIA in DPMJET is that only
one nucleon in the nucleus will be picked as a target nucleon in the collision.”

If valid, looking for Q_in eAu would be easy. Just measure k_recoil in ep & eAu.
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